Multiscale Maxwell-Schrodinger modeling: A split field finite-difference time-domain approach to molecular nanopolaritonics.

نویسندگان

  • Kenneth Lopata
  • Daniel Neuhauser
چکیده

We present a combined finite-difference time-domain/linear response approach for modeling plasmon/molecule systems. The self-interaction of the molecule is avoided by splitting the fields and currents into two parts: those due to the molecule and those from everything else. This approach is suitable for describing surface plasmons on metal nanostructures interacting in the near field with nearby dipolar molecules or semiconductor nanostructures. The approach is applied to three collinear 5 nm diameter gold nanoparticles; the results demonstrate that a nearby molecule strongly affects surface plasmon transfer along the array. Specifically, an xy oriented molecule situated midway between the second and third nanoparticles exhibits a symmetric Fano-type inference effect. Transmission of incident x-polarized energy from the second nanoparticle to the third is enhanced over a frequency range below the molecular resonance, and partially scattered into y-polarized currents for frequencies above. At the molecule's resonance frequency, the magnitude of the resulting y-current is approximately 20% of the x-current.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear nanopolaritonics: finite-difference time-domain Maxwell-Schrödinger simulation of molecule-assisted plasmon transfer.

The effect of nonlinear excitations of a nearby two-state dipolar molecule on plasmon transfer across a pair of spherical gold nanoparticles is studied numerically using a split field finite-difference time-domain Maxwell-Schrödinger approach [K. Lopata and D. Neuhauser, J. Chem. Phys. 130, 104707 (2009)]. It is observed in the linear response regime that the molecule has a drastic effect on pl...

متن کامل

Mechanistic Modeling of Organic Compounds Separation from Water via Polymeric Membranes

A mathematical model considering mass and momentum transfer was developed for simulation of ethanol dewatering via pervaporation process. The process involves removal of water from a water/ethanol liquid mixture using a dense polymeric membrane. The model domain was divided into two compartments including feed and membrane. For a description of water transport in ...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

FDTD for Hydrodynamic Electron Fluid Maxwell Equations

In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD) method for solving the Maxwell’s equations and an explicit central finite difference method for solvin...

متن کامل

A Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method

Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 130 10  شماره 

صفحات  -

تاریخ انتشار 2009